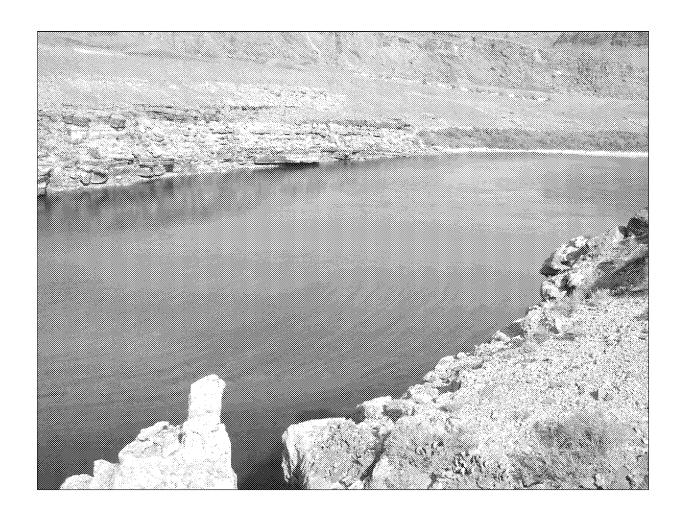

Navajo Nation Environmental Protection Agency

Proposed Amendments to 2007 Navajo Nation Surface Water Quality Standards

Approximately 18 million acres or 27.5 thousand square miles

Watershed Name	2 digit code	8-digit HUC
Chinle Wash	01	14080204
Lower San Juan - Four Corners	02	14080201
Montezuma Creek	03	14080203
McElmo Creek	04	14080202
Arroyo Chico	05	13020205
Chaco Wash	06	14080106
Mancos River	07	14080107
Upper San Juan River	08	14080101
Blanco Canyon	09	14080103
Middle San Juan River	10	14080105
Rio Puerco	11	13020204
Rio San Jose	12	13020207
Rio Salado	13	13020209
Zuni River	14	15020004
Upper Puerco River	15	15020006
Lower Puerco River	16	15020007
Leroux Wash	17	15020009
Cottonwood Wash	18	15020011
Middle Little Colorado River	19	15020008
Jeddito Wash	20	15020014
Polacca Wash	21	15020013
Canyon Diablo	22	15020015
Corn-Oraibi Wash	23	15020012
Dinnebito Wash	24	15020017
Lower Little Colorado River	25	15020016
Moenkopi Wash	26	15020018
Lower Colorado - Marble Canyon	27	15010001
Lower Lake Powell	28	14070006
Lower San Juan River	29	14080205

Smallest Mancos at 64 square miles Largest Chaco at 4500 square miles Over 120 name surface waters with designated uses


San Juan Basin

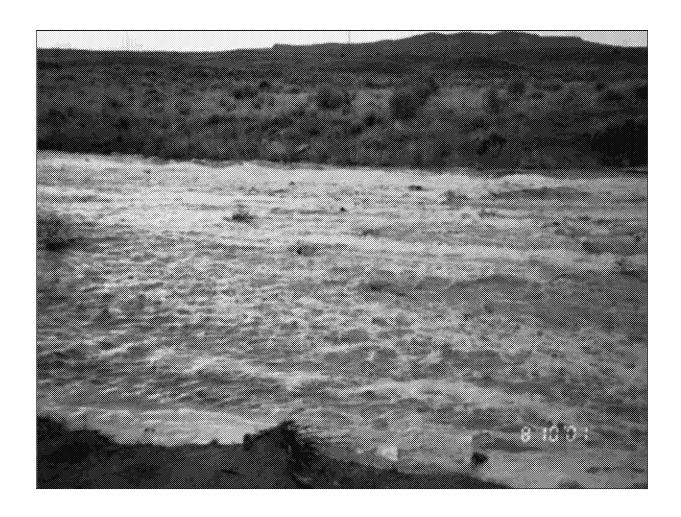
Rio Grande Basin - Blue Water

Little Colorado River Basin

Lower and Upper Colorado River Basins

From Mountain Lakes (Whiskey)


And streams (Asaayi Creek)


Ephemeral

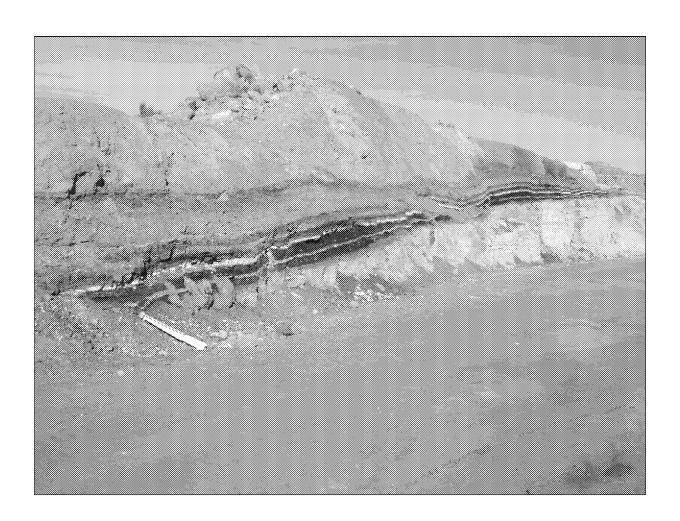
desert

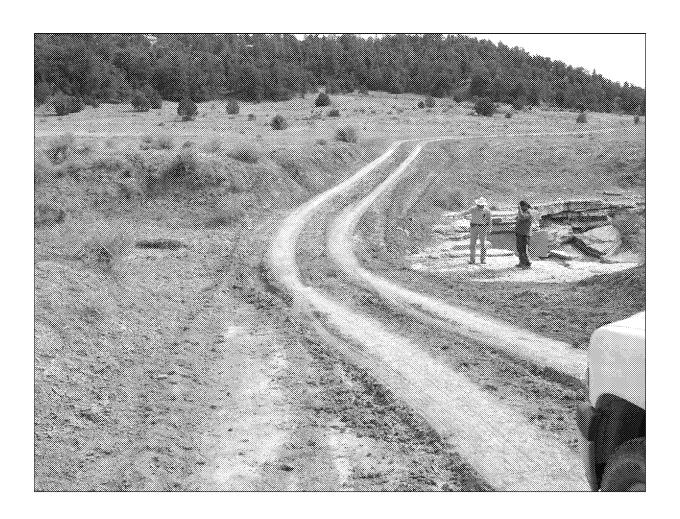
Washes

washes

Proposed Amendments to 2007
Navajo Nation
Surface Water Quality
Standards (NNSWQS)

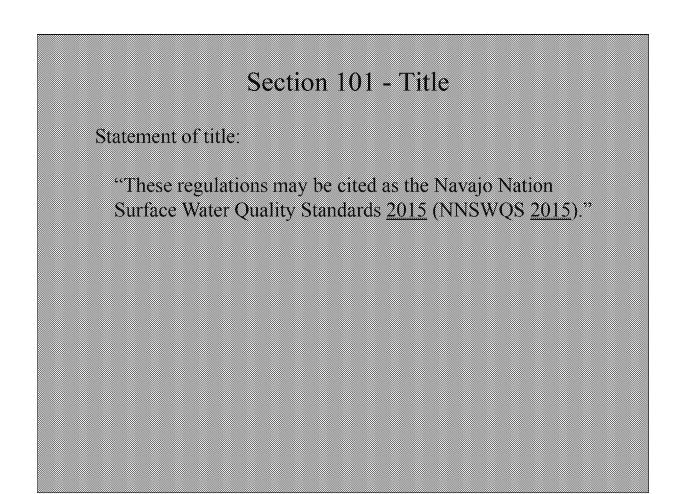
NNSWQS Document			
Consists of:			
Part I - General Provisions			
Part II - Surface Water Quality Standards			


NNSWQS Document (continued)


Part I - General Provisions:

- 101 Title
- 102 Authority
- 103 Purpose
- 104 Definitions
- 105 Severability

NNSWQS Document (continued) Part II - Surface Water Quality Standards: Antidegradation Policy 201 202 **Antidegradation Implementation Procedures** <u>203</u> Narrative Surface Water Quality Standards <u>204</u> Implementation Plan 205 Narrative Nutrient Standard Implementation Plan 206 Designated Use Classification System for NNSW Numeric Surface Water Quality Standards 207 Sample Collection and Analysis 208 209 **Exceptional Waters of the Navajo Nation** Variances 210 211 Wastewater Mixing Zones 212 Site Specific Standards <u>213</u> Natural Background <u>214</u> Biological Standards (Reserved)



As opposed to Ground Water Quality Standards which may be proposed in the future.

Section 102 - Authority

- A. Navajo Nation Authorization:
 - 1. Navajo Nation Clean Water Act Section 104(b), and
 - 2. Navajo Nation Clean Water Act Section 201.
- B. Federal Authorization:
 - 1. Federal Clean Water Act Section 303, and
 - 2. Federal Clean Water Act Section 518.
- C. No amendments to this section.

B.1. Section 518 is Tribal Authorization.

Section 103 - Purpose

A. Provides the intent of standards and states that standards apply to all "Waters of the Navajo Nation" (as defined in Navajo Nation Clean Water Act and in Section 104):

General purpose: to protect, maintain, and improve water quality for water supply, plant and animal life, domestic, cultural, agricultural, recreational, and industrial uses.

- B. This purpose is consistent with the goals of the Navajo Nation and federal Clean Water Acts.
- C. No amendments to this section.

Cultural emphasis.

Section 104 - Definitions

- A. Sets definitions for all technical, legislative, and jurisdictional terms used in the Water Quality Standards.
- B. Key changes to definitions
- "Assimilative Capacity" means the difference between the baseline water quality concentration of a pollutant and the most stringent applicable water quality criterion for that pollutant.

B. Ambiguity or misunderstandings or different interpretations.

Section 104 - Definitions

"Critical Flow Condition" means the lowest flow over seven consecutive days that has a probability of occurring once in 10 years (7 Q 10).

"Chronic Standard" means a standard that applies to the geometric mean of the analytical results of the last four samples taken at least 24 hours apart arithmetic mean of samples collected during four consecutive days.

B. Ambiguity or misunderstandings or different interpretations.

Section 105 - Severability

A. States that if, for any reason, any provision or application of the Navajo Nation Water Quality Standards is found to be invalid, that the remaining provisions and applications are to remain unaffected.

This concludes Part I - General Provisions

Section 201 - Antidegradation Policy

A. Provides tiers of water quality protection.

Tier 1: The level of water quality necessary to protect existing uses shall be maintained and protected. No degradation of existing water quality is permitted in a surface water where the existing water quality does not meet the applicable water quality standard.

Part II - Surface Water Quality Standards - existing instream uses changed to existing designated uses

Section 201 - Antidegradation Policy

Tier 2: Where existing water quality in a surface water is better than the applicable water quality standard, the existing water quality shall be maintained and protected. The Director may allow limited degradation of existing water quality in the surface water.

But not violate the WQS.

Section 201 - Antidegradation Policy

Tier 3: Existing water quality shall be maintained and protected in a surface water that is classified as a Exceptional Water of the Navajo Nation under NNSWOS 2015 Section 209.

The Director may allow limited degradation of an Exceptional Water of the Navajo Nation.

But not violate the WQS.

A. Process by which antidegradation decisions are made.

This section applies to a regulated discharge that may degrade the existing water quality of a surface water. "Regulated discharge" means a point source discharge regulated under a National Pollutant Discharge Elimination System (NPDES) permit, any discharge regulated by an individual, nationwide or regional §404 permit, and any discharge authorized by a federal permit or license that is subject to Navajo Nation water quality certification under §401 of the US Clean Water Act

Tier 1 antidegradation protection: The level of water quality necessary to meet applicable water quality standards shall be maintained and protected in a ephemaral, perennial, or intermittent surface water.

A regulated discharge shall not cause a violation of the surface water quality standard for a surface water listed as impaired under the US Clean Water Act §303(d) list and/or listed as effluent limited under the Navajo Nation Clean Water Act §205.

Tier 2 antidegradation protection applies to a perennial water with existing water quality that is better than applicable water quality standards. Existing water quality water shall be maintained and protected

A perennial water water that is not listed as impaired under the US Clean Water Act §303(d) list and/or not listed as effluent limited under the Navajo Nation Clean Water Act §205 for the pollutant that results in a listing is presumed to have Tier 2 antidegradation protection for all pollutants of concern.

Tier 3 antidegradation protection applies only to Exceptional Waters of the Navajo Nation and their tributaries. Existing water quality in an Exceptional Water of the Navajo Nation shall be maintained and protected. A new or expanded regulated discharge directly to an Exceptional Water of the Navajo Nation is prohibited.

Section 203 - Narrative Surface Water

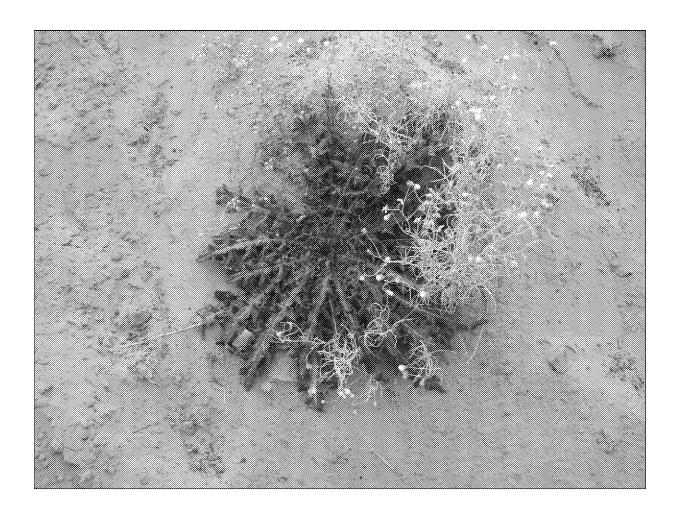
Quality Standards

A. Protects all waters in narrative form from degradation that would adversely affect human health, plant, and animal communities.

- B. Provides for protection of waters that are not yet assigned designated uses and for waters that may not have sufficient numeric criteria.
- C. Provides that all Navajo Nation waters shall be free from toxic pollutants. Aquatic toxicity may be determined by the "National Whole Effluent Toxicity (WET)
 Implementation Guidance Under the NPDES Program.
 Draft, U.S. Environmental Protection Agency, Office of Wastewater Management,

Probably the greatest level of protection for Waters of the Navajo Nation is provided by the narrative surface water quality standards.

Added nutrient narrative – implementation plan in 204 Added trash dumping narrative



Section 204 - Implementation Plan

- A. Details the Water Quality Standard Program's goals and objectives. Highlights include:
 - 1. Water quality database development,
 - 2. Determine effectiveness of pollution controls,
 - 3. Provide technical assistance to wastewater facilities,
 - 4. Develop and pursue inspection and enforcement programs.
 - 5. Require that sufficient instream flows be maintained to support designated uses and water quality standards, and
 - 6. Determine whether designated uses are met. (CWA 303(d) and 305(b) water quality reporting.

Part of Water Quality Standards Process mentioned earlier.

Thistle

Section <u>205</u> – Narrative Nutrient Standard Implementation Plan

- A. Sets numeric and narrative nutrient targets for lakes and reservoirs during peak productivity season.
- B. No amendments made to this section.

Algae blooms, fish kills, nuisance aquatic vegetation. Implementation of nutrient narrative in 202

Section <u>206</u> - Designated Use Classification System for Navajo Nation Surface Waters

- A. Minimum uses designated for surface waters.
- B. Other uses determined through public input and professional judgment. Past, present and future uses considered
- C. Current Navajo Designated Uses provide protection for:
 - Domestic Water Supply,
 - 2. Fish Consumption,
 - Recreation, Ceremonial, and Cultural: Primary & Secondary Human Contact,
 - 4. Agricultural Water Supply,
 - 5. Aquatic and Wildlife, and
 - 6. Livestock Watering.

Change of definitions for LW and AWHbt

B. Moenkoepi example - Agricultural Water Supply - springs dried up by groundwater withdrawls- industry said use not appropriate.

Section <u>206</u> - Designated Use Classification System (continued)

- D. Existing water quality <u>does not</u> need to be determined before assigning designated uses (40 CFR 131.10(k)).
- F. Adding new water bodies to the Water Quality Standards may be done during each triennial review period.
- G. Designated uses can only be changed if the use cannot be attained.

^{2.} Industry said to do Use Attainability Analysis before designating a use. Not required to.

Section <u>206</u> - Designated Use Classification System (continued)

- H. Each designated use has a corresponding numeric water quality standard that provides protection for that designated use.
- I. Numeric standards are different for different designated uses. For example:
 - One compound, such as the metal Mercury, may have one numeric standard for water used as a domestic water supply and a different one for water that is used for livestock and wildlife watering.
- J. When a water has more than one designated use, the numeric standards applied are the most stringent established for that body of water.

I. Provide Example.

Section <u>206</u> - Designated Use Classification System (continued)

K. Known Waters of the Navajo Nation and their designated uses are found in Table 206.1.

The following minimum designated uses apply to a surface water that is not listed in Table 206.1 but that is a tributary to a listed surface water:

The aquatic and wildlife, agricultural water supply, secondary human contact and livestock watering designated uses apply to a tributary that is an ephemeral water.

The aquatic and wildlife, agricultural water supply, secondary human contact, primary human contact, fish consumption and livestock watering designated uses apply to an unlisted tributary that is a perennial or intermittent surface water.

I. Provide Example.

Notingo Hathor Souther Water Charley Standards 2009 2015 Newsja Nation RPA Water Gooloy Energen Fuble 308.4 208.1 Unsignated Coss for Navago Nation Norfice Waters Sarfore Water Rody :Witne the perceiving of the Perceo Notices Little Litters Chieseste SelliG dut95 Chieseste Nordels Corners Distriction, some month conden Dig Camponyorunabil and interrelitizat reaches iátik <u>Leons Coltandes</u> Colascolo <u>Signik Conce</u> 248C 568C A68E 20 A\$59. W Gardes Convention Control Con Satt froit Carros curiorates i contro asis: 638 See Lived Commons, noncomments and determinate construction of the Control Commons (Control Control Co Concer Concer Concerc Letelscov Ward scootbelmoneconings-schoolscolooksch Testilation Visida devotable har microtraverse contractions of the contraction of the con Environ Factor Casesdo hellic Addiss to Colorado de Mario Casesdo hellic Casesdo Environ Environ Estado Casesdo Estado Casesdo Estado Calenda de Casesdo Casesdo Estado Calenda de Casesdo Casesdo Estado Casesdo Casesdo Estado Casesdo Cases AAWIA AAW : W arwik arn 6636434 I.W 68X 1.89 Selec Assess ## i W Lower Lower Coleselo <u>Crist</u> 5-450 <u>April 50</u> Additional Coleselo Market Course: W Linear Larver Coloredo Dev 1980 9390 Ages PC Coloredo Ages Coloredo Dev 1980 9390 Ages PC Coloredo Ages Coloredo A Latarada Rives, marthrolistic Coincedo Libros ocupants of Paris River arunn SSX 1.39 mann maka mashka Lewer Lorest Calcastle Base TrHC Select <u>660%</u>
Colorate god Metals frames god Cappe Fance Folia
Colorate Princip Coloredo Viren <u>soid ante austro</u> PC алыны Даш äW ingapar kannankarian timan battal indibil ingilit Kalimada Bancali Ceireado Risso servelhosi Describinos es vina-Compose Linas 340 ARWIN MM تجترة Upper known know Orderate Parcell SHEE SHEE GEES A4049a : W Sopre Sonrolicio Prific SATO 2018 SO 6604440 ON Coloredo Presid COLO.

Coloredo Presid COLO.

Coloredo Presido Bride Sotti 2018 NO AMBRIDA ON Coloredo Presido COLORES NO AMBRIDA ON COLORES Presido COLORES NO AMBRIDA COLORE Antologo Cook, <u>porocasil our intermitted spector</u>

I. Provide Example.

Section <u>207</u> - Numeric Surface Water Quality Standards

A. Navajo Nation derive numeric criteria and also adopte numeric criteria from:

Surrounding states, other tribes and federal criteria

- B.. Numeric Standards protect the designated uses.
- C. Level of protection may be higher than that of adjacent state or tribe for the same designated use.

Condensed tables

Section <u>207</u> - Numeric Surface Water Quality Standards (continued)

- E. Federal EPA will review numeric standards to ensure that they will provide the level of protection required for each designated use.
- F. Numeric Surface Water Quality Standards are found in this section and in Table <u>207.1</u>.

Mercury and Methylmercury: The following are the water quality standards for mercury and methylmercury in total concentrations which apply only to Waters of the Navajo Nation listed in this section (§ 207 (I)):

A&W(chronic) Mercury 0.001 ug/L Methylmercury 0.0011 ug/L

D. Agricultural Water Supply Standard for molybdenum for New Mexico is 1.0 mg/L while Navajo is 0.01 and adopted from New Mexico Pueblos and Hopi tribe to protect cultural uses associated with agricultural waters. Adopted criteria for methyl mercury in fish and water. And 0.00011 ug/L mercury in water for Aq&WHbt chronic lowest in the country

F. From: Data in the field. Published scientific reports.

Nois-November Wed Service \$100 (1) (2)

Turkio Winn 2022, Menorch Sarthur Weier Qualler Steadarch conscionce (AS austrice in pigit, author diservate indicated) (AS postoria steadarch coeda tool society along author and are indicated). (As postoria transference

					,					
Presence-	CAS Nombre	Swazene	FHR	Pritousy	Sections	Appendix &	3:peote &	Approximent	Limotecit	
(Prestonecountries appear		Next	Coscoptiva	Buccuc	Воссае	Wikiliko Siebber	WibSin Hotore	Waise	Westing	
attornoise seducateds	İ	Swyrt		Cinerard	Contess	Acate	Glemate	Skyrit		
lenati:	2232		20064	522	222	302.00	200305	86286	18344	
Declarations	3353553		386	3000	Nillia	20.00	28285	20200	Nillia	
Dogas	23652	20	News	2562	2500	Stass	20085	3638	Notes	
the broken article	591977	20.35	29	5000	2500	73	50%	MONS	89098	
tiscosta : triss	185087	- 60	20	200-	2000	23	-900	2038	SOFS	
Localesi	145334	200	8028	1866	28007	3533	:5035	280383	8036	
Kubb.	70200	\$100	5446 3455	3%	.88+	0000	6666 0.000	Nada-k-1200	44444 (1990)	
Podosationale	3 (2150)	Y 29	43	804	MON	0100	6960 s 200	-86.NM	NON	
Kitothi-seese	500444	44K QC:	6600 120	50000	900000	29999	0.00	90.86	SONS	
Hamotop	280940	86.20	84.26	27330	27554	360	1,555	19089	NONS	
Dageno	9:05	2W 22	4899.25	37590	37339	437	29/3/8	19.3%	55.55	
Fluenide Sparke:	1678-1682	936	25089	69944.00000	24966 (45)600	19,552	30,548	10008	58383	
score litradistra rildenne (RC):	2698	52	قد	26,325	2083	35.55	8026	35225	SENS	
050000	2071836	289	20000	53333	20111	26,2-2	8070	NC:65	25000	
6.choo:	65560	55,21-5	60505	HCM	55.85	192.0	202	N996	55.985	
Come Alpos emisels <u>(Secola)</u>	1	- 6	90%	HCS	N196	30.5-3	50098	NG98	+441505	
Disphelder	35384	0166676 (L000007)	5,400,072,5,000,7250	, ,	470	0.55	9/89/PR \$20036	80%	N: 906	
Eighe blan annuae	5657771	6468624 <u>676766</u>	4000000 (10000)	·····		4.60	6,000 6 (10)	90.568	N/ 965	
Husabhochases	180%	P-00000 (Labority	4494201040100	ψį.	750	54	+22	9CNS	NORa	
From Street Considers	2002	644626	14100	18	50	*		N/NS	82%S	
troscororossori Usascionarosido caso (sates)	5800		1780	281	360	(0)	3085	98788	808	
Hoselforouskoons (* Citylintensi -	09730	# 2066	0.64	8098	Scies	W.N4	200	5CNS	No.168	
homotrococcania	99,50		223	200	3900	32	6.3	35.88	20010	
Hospitaristan	N770.	1453	3433	326	260	40:	550	908	200148 200148	
	163461	+6660 (10012	9968 <u>016-1</u>	56098	260.08	WONG.	96.065	V8C85		
hdeoi -15 otenou	2550	9535	600 <u>0.000</u>	82.0	25.88 (566%)	28,5%	4000	90.85	50.98 50.98	
Baciosoco Baciosoco	(50880)	15	8689			ee kalkamaliiside Mildii	30 Sociologic Later 20111 3		290	
bassacae.	3492942	596	808	18362	18887	3033	9083	10000	88348	
Marian (14)	5,6355	1	546	250	284	2.4300	444-64-5-5-1700	98.86	34345-01	
heads-bearings		146.006	Nesex	395745	Modes	MANA.	090,000	06384	300348	
kidhidosonas (nyity fido	1	Other:	63	90768	NOSS	98.NE	29t 500	58036	NOS	
idelenseMa	10465	900.00	56,600,010	6678	4650	4.53	86.83	90°86	58.168	
Flader teacate	7966	19	599	SKNS	26.003	550	357	100388	56288	
Refly solvens	1963	2070	04369	9088	54065	2522/4	3889	200798	*9988	
Adequa 3000	7990	\$0	290	1 9	39900	20000	5000	100,99	9480	
(Antidaya (14a	200081	50.705	0000	4CSS	41009	20.53	NO.00	1004-2150	44.83	
Nobeles (Ma	9(34)	100	100	100.71	19550	40)	212	3006	66365	
200000000 Salari - Fra	7606726	585	1000	18/30	9670		on Sectional Teles		News	
SOURT - FEE	4000000	300	-00	160(75)	190 0	28,13 0	392.550	man of the	100.010	

1000

Table 207.11 Chronic Water Quality Standards for Dissolved Lead - Aquatic	and Wildlife
TOMIC MUTTI TOTAL STRUCT WASHING SCALLED TOT BIDGOTT CO MCCO. TOMICALO	MITG TIME

Chronic Standard = [e (1.273 [ln (hardness)] - 4.706) [[1.46203-[ln (hardness)](0.145712)]																			
Hard.	Std.	Hard.	Std.	Hard.	Std.	Hard.	Std	Hatd.	Std.	Hard.	Std.	Hard.	Std.	Hard.	Std.	Hatd.	Std.	Hard.	Std.
ma/L	ua/L	mg/L	ua/L	ma/L	Nu/A	mg/L	ua/L	ma/L	ua/L	ma/L	บถ/L	ma/L	ug/L	ma/L	uc/L	mg/L	ua/L	ma/L	ug/L
	0.01	300	0.94	81	2.00	121	3.10	155	4.21	200	5.33	265	6.46	284	7.59	321	8.72	30	9.85
	0.03	200	0.97	62	2.03	122	3.12	152	4.24	202	5.36	369	6.49	222	7.62	322	8.75	360	88.8
	0.05		0.99		2.05	123	3.15	100	4.27		5.39	233	6.52	200	7.65	1022	8.78		9.90
	0.07	200	1.02	8.8	2.08	124	3,18	154	4.29	304	5.42	364	6.55	284	7.68	224	8.81	36.4	9.93
	0.09	100	1.04	100	2.11	123	3.21	617	4.32	80028	5.45	200	6.57	285	7.70		8.83	288	9.96
	0.11	3.8	1.07		2.13	128	3,23	(6)	4.35	200	5.47	238	6.60	288	7.73		8.86	386	9.99
	0.13	42	1.10	82	2.16	127	3.26	187	4.38	200	5.50	232	6.63	287	7.76	327	8.89	367	10.02
	0.15	W. 1	1.12	38	2.13	163	3.29		4.41	800	5.53	200	6.66	266	7.79	8888	8.92	3150	10.05
	0.17	333	1.15	89	2.22	120	3.32	1593	4.43	202	5.56	202	6.69	289	7.82	3.0	8.95	28.9	10.07
	0.19	50	1.17	90	2.24	130	3.34	770	4.46	310	5.59	250	6.72	290	7.85	333	8.97	32.1	10.10
	0.21	888	1.20	1	2.27	132	3.37	8928	4.49	211	5.62	393	6.74	235	7.87	332	9.00	3221	10.13
	0.24	350	1.23	188	2.30	132	3.40	1702	4.52	212	5.64	35.2	6.77	293	7.90	332	9.03	37,2	10.16
	0.28	333	1.25	93	2.33	133	3.43	103	4.55	213	5.67	293	6.80	243	7.93	333	9.06	373	10.19
W140	0.28	1.82	1.28	88	2.35	134	3.46	174	4.57	200	5.70	284	6.83	282	7.96	334	9.09	822	10.21
	0.30	36	1.31	98	2.38	136	3.48	175	4.60	215	5:73	285	6.86	235	7.99	3335	9.12	325	10.24
	0.33	58	1.33	96	2.41	136	3,51	976	4.63	216	5.76	255	6.89	296	8.02	336	9.14	822.5	10.27
32	0.35	57	1.36	97	2.43	137	3.54	2000	4.66	212	5.78	252	6.91	257	8.04	337	9.17	1000	10.30
	0.37	000	1.38	98	2.46	138	3.57	100	4.69	24.6	5.81	295	6.94	298	8.07	335	9.20	200	10.33
	0.40	5.8	1.41	99	2.49	139	3,60	179	4.71	219	5.84	259	6.97	299	8.10	339	9.23	273	10.35
	0.42	380	1.44	3300	2.52	146	3.62	100	4.74	200	5.87	280	7:00	600	8.13	349	9.26	250	10.38
20	0.44	8018	1.46	301	2.54	141	3.65	383	4.77	201	5.90	200	7.03	302	8.16	341	9.28	363	10.41
	0.47	1 32	1.49		2:57	143	3.68	180	4.80	200	5,93	202	7:05	302	8.18	343	9,31	202	10.44
	0.49	688	1.52	30.8	2.60	146	3.71	22.61	4.83	9226	5.95	W/W	7:08	630%	8.21	346	9.34	88.00	10.47
223	0.52	54	1.54	104	2.63	148	3.73	184	4.85	22.0	5,98	260	7.11	304	8:24	344	9.37	368	10.49
	0.54	1000	1.57	100	2.65	146	3.76	135	4.68	2276	6.01	285	7.14	308	8.27	343	9.40	388	10.52
22.5	0.57	38	1.60	1000	2.68	148	3.79	156	4.91	228	3.04	256	7.17	306	8.30	348	9.43	388	10.55
- Table 1	0.59	1000	1.62	337	2.71	147	3:82	267	4.94	227	6:07	237	7.20	307	8.33	347	9.45	387	10.58
23	0.61	68	1.65	108	2.74	148	3.85	188	4.97	228	6:09	288	7.22	308	8.35	348	9.48	368	10.61
	0.64	803	1.68		2.76	148	3.87	4865	5.00	228	5.12	202	7.25	302	8.38	263	9.51	38.8	10.64
	0.66	100	1.70	Ш	2.79	150	3.90	201	5.02	236	6.15	220	7.28	(330	8.41	3.31	3.54	300	10.66
	0.69	21	1.73	311	2.82	153	3,93	189	5.05	253	5:18	278	7.31	93	8.44	351	9.57	30.1	10.69
	0.71	1000	1.76	11/2	2.85	152	3,96	1926	5.08	252	5.21	27.2	7.34	100	3.47	0.52	9.59	0.00	10.72
	0.74		1.78	118	2,87	153	3.99	1150	5.11		6,24	228	7.37	333	8.50	3581	9.62	333	10,75
	0.76	24	1.81	313	2.90	154	4.01	182	5.14	234	6.26	272	7.39	384	8.52	254	9.65	393	10.78
	0.79	7.5	1.84	1115	2.93	153	4.04	192	5.16		6.29	375	7.42	315	8.55	25	9.68	22.5	10.80
	0.81	100	1.86		2.96		4.07	150	5.19	200	6.32	22.0	7:45	335	8.58	258	9.71	28.6	10.83
	0.84	72	1.89	1117	2.98	157	4.10	197	5.22	2.0	6.35	1 222	7.48	317	8.61	257	9.74	327	10.86
	0.87	100	1.92		3.01	128	4.13	158	5.25	233	6.38	376	7.51	336	8.64	258	9.76	22.0	10.89
	0.89	7.5	1.95	100	3.04	169	4.15	199	5.28	238	6.41	272	7.54	339	8.66	259	9.79	383	10.92
4000	0.92	86	1.97	1120	3.07	160	4.18	200	5.31	240	6.43	200	7.56	326	8.69	360	9.82	480	10.94

Section <u>208</u> - Sample Collection and Analysis

- A. When the regulated community is required to comply with a numerical water quality standard, the sampling and laboratory techniques they use to gather this information must be of high quality.
- B. Requires the regulated community to use sample collection and analysis methods acceptable to the Navajo Nation EPA Water Quality Program.
- When an analytical result is reported as <X or as =X, where X is the Method Reporting Limit for the analyte and the Method Reporting Limit is less than or equal to the surface water quality standard, the result will be considered as meeting the water quality standard.

<u>Section 209 – Exceptional Waters of the Navajo Nation</u>

- A. New section. Replaces definition of "Unique Waters".
- B. Process by which a surface water may be classified as an Exceptional Water of the Navajo Nation (EWNN).

Part II - Surface Water Quality Standards – existing instream uses changed to existing designated uses

Section 210 - Variances

- A. Provides Water Quality Program flexibility.
- B. Does not modify a water quality standard.
- C. Applicant must meet strict requirements:
 - 1. Not technically feasible to achieve compliance within three years; or
 - 2. Cost of treatment would result in substantial and widespread social and economic impact.
 - 3. No Variances for discharges into EWNN.
- D. Not renewable but reissued with adequate justification.
- E. One amendment to this section.

Variances are pollutant specific

Section <u>211</u> - Wastewater Mixing Zones

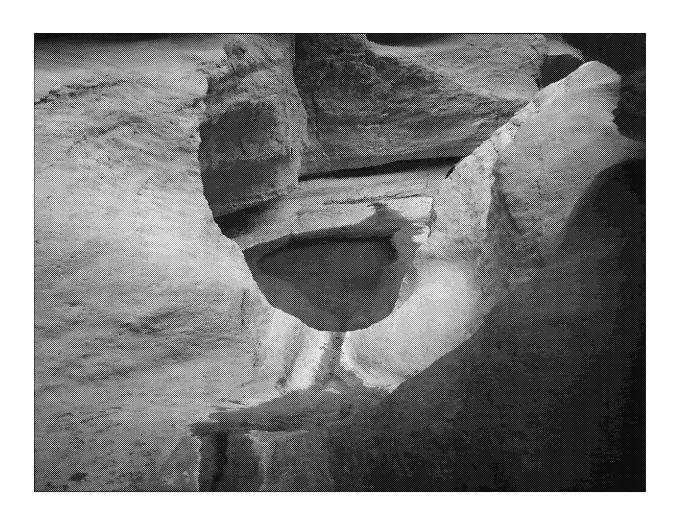
- A. Provides Water Quality Program flexibility.
- B. Area in a surface water body where dilution of wastewater occurs, therefore numeric standard may be exceeded in this dilution or mixing zone.
- C. Applicant must meet strict requirements:
 - Mixing zones are not granted in lieu of control measures to reduce point source discharges but will be granted to complement such measures.
 - 2. Approval is required by Navajo Nation EPA and concurrence by federal EPA.
- D. Amendments were made to this section.

Section 212 - Site Specific Standards

- A. New section.
- B. Process for adopting a site specific water quality standard at a given surface water body.

Part II - Surface Water Quality Standards – existing instream uses changed to existing designated uses

Section 213 –Natural Background


- A. New section.
- B. Statement that natural background may be used when deciding if a water quality standards is violated.

Part II - Surface Water Quality Standards – existing instream uses changed to existing designated uses

Section 214 - Biological Criteria (Reserved)

- A. May be required by federal EPA in the future.
- B. Biological standards are determined by looking at the health of the biological communities (plants, insects, amphibians, fish, and wildlife) present in, or near, Navajo Nation surface water bodies.
- C. When combined with numeric water quality standards, this provides for increased human health and aquatic life protection.
- D. No amendments made to this section.

Ends Water Quality Standards Document

Eric Rich
Senior Hydrologist
Navajo Nation EPA
Water Quality/NPDES Program
Western Agency Office
928-890-7599
aguapuro@wildblue.net